MAX materials and MXene materials are new two-dimensional materials that have attracted much attention in recent years, with excellent physical, chemical, and mechanical properties, and possess shown broad application prospects in numerous fields. The following is an in depth overview of the properties, applications, and development trends of MAX and MXene materials.
What exactly is MAX material?
MAX phase material is a layered carbon nitride inorganic non-metallic material comprising M, A, X elements in the periodic table, collectively known as “MAX phase”. M represents transition metal elements, like titanium, zirconium, hafnium, etc., A represents the key group elements, like aluminum, silicon, germanium, etc., X represents carbon or nitrogen. MAX-phase materials, each atomic layer consists of M, A, X, the three aspects of the alternating composition arrangement, with hexagonal lattice structure. Due to their electrical conductivity of metal and high strength, high-temperature resistance and corrosion resistance of structural ceramics, they are widely used in high-temperature structural materials, high-temperature antioxidant coatings, high-temperature lubricants, electromagnetic shielding and other fields.
Properties of MAX material
MAX material is a new kind of layered carbon nitride inorganic non-metallic material with the conductive and thermal conductive qualities of metal, consisting of three elements with the molecular formula of Mn 1AXn (n=1, 2 or 3), where M means the transition metal, A refers back to the main-group elements, and X refers back to the elements of C or N. The MXene material is actually a graphene-like structure obtained through the MAX phase treatment with two-dimensional transition metal carbides, nitrides, or carbon-nitrides. MAXenes and MXenes are novel two-dimensional nanomaterials composed of carbon, nitrogen, oxygen, and halogens.
Uses of MAX materials
(1) Structural materials: the wonderful physical properties of MAX materials make them have a variety of applications in structural materials. For example, Ti3SiC2 is a very common MAX material with good high-temperature performance and oxidation resistance, which can be used to manufacture high-temperature furnaces and aero-engine components.
(2) Functional materials: Besides structural materials, MAX materials will also be used in functional materials. For instance, some MAX materials have good electromagnetic shielding properties and conductivity and could be used to manufacture electromagnetic shielding covers, coatings, etc. Furthermore, some MAX materials likewise have better photocatalytic properties, and electrochemical properties can be used in photocatalytic and electrochemical reactions.
(3) Energy materials: some MAX materials have better ionic conductivity and electrochemical properties, which may be used in energy materials. For example, K4(MP4)(P4) is one in the MAX materials rich in ionic conductivity and electrochemical activity, which can be used as a raw material to manufacture solid-state electrolyte materials and electrochemical energy storage devices.
Exactly What are MXene materials?
MXene materials really are a new kind of two-dimensional nanomaterials obtained by MAX phase treatment, similar to the structure of graphene. The top of MXene materials can communicate with more functional atoms and molecules, as well as a high specific area, good chemical stability, biocompatibility, and tunable physical properties, etc, characterize them. The preparation methods of MXene materials usually are the etching therapy for the MAX phase and also the self-templating method, etc. By adjusting the chemical composition and structure of MXene materials, the tuning of physical properties including electrical conductivity, magnetism and optics may be realized.
Properties of MXene materials
MXene materials are a new form of two-dimensional transition metal carbide or nitride materials comprising metal and carbon or nitrogen elements. These materials have excellent physical properties, including high electrical conductivity, high elasticity, good oxidation, and corrosion resistance, etc., as well as good chemical stability and the ability to maintain high strength and stability at high temperatures.
Applications of MXene materials
(1) Energy storage and conversion: MXene materials have excellent electrochemical properties and ionic conductivity and therefore are commonly used in energy storage and conversion. For instance, MXene materials bring electrode materials in supercapacitors and lithium-ion batteries, improving electrode energy density and charge/discharge speed. Furthermore, MXene materials could also be used as catalysts in fuel cells to boost the activity and stability in the catalyst.
(2) Electromagnetic protection: MXene materials have good electromagnetic shielding performance, and conductivity can be used in electromagnetic protection. For instance, MXene materials bring electromagnetic shielding coatings, electromagnetic shielding cloth, along with other applications in electronic products and personal protection, boosting the effectiveness and stability of electromagnetic protection.
(3) Sensing and detection: MXene materials have good sensitivity and responsiveness and can be used in sensing and detection. For instance, MXene materials bring gas sensors in environmental monitoring, which could realize high sensitivity and selectivity detection of gases. Furthermore, MXene materials can also be used as biosensors in medical diagnostics along with other fields.
Development trend of MAX and MXene Materials
As new 2D materials, MAX and MXene materials have excellent performance and application prospects. Later on, with the continuous progress of science and technology as well as the increasing demand for applications, the preparation technology, performance optimization, and application areas of MAX and MXene materials is going to be further expanded and improved. The subsequent aspects could become the main focus of future research and development direction:
Preparation technology: MAX and MXene materials are mainly prepared by chemical vapor deposition, physical vapor deposition and liquid phase synthesis. Down the road, new preparation technologies and methods can be further explored to comprehend a much more efficient, energy-saving and eco-friendly preparation process.
Optimization of performance: The performance of MAX and MXene materials is definitely high, there is however still room for more optimization. Down the road, the composition, structure, surface treatment as well as other facets of the content could be studied and improved in depth to enhance the material’s performance and stability.
Application areas: MAX materials and MXene materials have been widely used in numerous fields, but you may still find many potential application areas to get explored. Later on, they can be further expanded, like in artificial intelligence, biomedicine, environmental protection and other fields.
In conclusion, MAX materials and MXene materials, as new two-dimensional materials with excellent physical, chemical and mechanical properties, show a broad application prospect in many fields. With all the continuous progress of technology and science as well as the continuous improvement of application demand, the preparation technology, performance optimization and application parts of MAX and MXene materials will likely be further expanded and improved.
MAX and MXene Materials Supplier
TRUNNANO Luoyang Trunnano Tech Co., Ltd supply high purity and super fine MAX phase powders, such as Ti3AlC2, Ti2AlC, Ti3SiC2, V2AlC, Ti2SnC, Mo3AlC2, Nb2AlC, V4AlC3, Mo2Ga2C, Cr2AlC, Ta2AlC, Ta4AlC3, Ti3AlCN, Ti2AlN, Ti4AlN3, Nb4AlC3, etc. Send us an email or click on the needed products to send an inquiry.